Circular dichroism spectroscopy and chiral sensing in optical fibers

Opt Express. 2021 Jul 19;29(15):23096-23112. doi: 10.1364/OE.426239.

Abstract

Chirality is a property of broken mirror symmetry and detecting the handedness of chiral material in small quantities is an important problem in biology and biochemistry. Here, we present a waveguide-based method to measure chirality and distinguish the enantiomers of molecules. A bi-isotropic core in an optical waveguide lifts the degeneracy of modes in a cylindrically symmetric structure. This modal degeneracy lifting is exploited to measure the chirality of the core. The proposed sensor can determine the value of the chirality parameter of the material under test and it can be utilized for various materials with nonzero chirality parameter in different frequency bands. This approach improves the circular dichroism (CD) response and outperforms conventional CD spectroscopy methods by increasing their differential output signal. To compare the results with conventional CD spectroscopy, the CD parameter is adapted to optical waveguides.